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Large amplitude flexural vibration characteristics of composite plates under transverse

harmonic pressure or periodic in-plane load are investigated here using the shear

deformable finite element method. The nonlinear stiffness matrix is formulated based

on von K�arm �an’s assumptions to obtain the stiffness interaction between the in-plane

be harmonic and the in-plane movement is assumed to be periodic. The nonlinear

matrix amplitude equation is obtained by employing Galerkin’s method. The coupled

nonlinear matrix amplitude equation (in-plane motion is coupled with flexural motion)

is solved to obtain (1) nonlinear free flexural vibration frequencies of isotropic and

composite plates with different in-plane boundary conditions, (2) flexural vibration

amplitudes of such plates under transverse harmonic pressure or periodic in-plane load.

Finally, the time history analysis is carried out to understand the steady-state or

unsteady nature of the flexural vibration under different loading and boundary

condition.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Nonlinear dynamics of plate like structures is a complex phenomenon involving both transverse displacement and in-
plane strain. The stiffness interaction (coupling) between the in-plane and bending degrees of freedoms are generally
expressed through von K�arm�an’s strain-displacement assumptions. Several analytical and numerical studies on the large
amplitude free flexural vibration behavior of isotropic or composite plates are reported in the literature [1,2]. In the
analytical investigations, the equation of motion for the nonlinear vibration of plates was reduced to a single nonlinear
differential equation in time by assuming single space-mode, which was solved by classical elliptic function approach [3,4],
perturbation method [5] and Runge–Kutta integration [6]. Numerical techniques, such as finite element method, overcome
the limitations of assumed space-mode. However, the selection of appropriate time function or determination of a steady-
state periodic solution of the differential equations with quadratic and cubic nonlinearity is a challenge to the researchers
working in the area of nonlinear dynamics of composite plates. The notable numerical contributions on this subject are the
use of harmonic balance method [7,8], multimode approach [9] and incremental Hamilton’s principle [10]. A thorough
review of the existing literature [11,12] reveals that the relationship between the nonlinear flexural vibration frequency
(oNL) and maximum vibration amplitude (wmax) for the free vibration of rectangular plates with immovable in-plane
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boundary condition are extensively investigated. However, studies on the influences of in-plane movements on the free and
forced vibration characteristics of plates with movable in-plane boundary conditions are limited in the literature.

Large amplitude flexural vibration may occur for such composite plates not only under transverse load, but also under
periodic in-plane load for certain combinations of load amplitude and disturbing frequency. This loss of stability (i.e., the
transverse vibration) of plates under dynamic in-plane load is known as dynamic instability [13,14]. The primary dynamic
stability region of such plates which occur for the excitation frequency near 2oL (oL is the lowest flexural vibration
frequency of the plate) has long been studied using linear structural theory [15–18]. However, understanding of the
nonlinear dynamic instability characteristics of such plates requires an in-depth knowledge of the nonlinear flexural
vibration frequencies and their interaction with in-plane forcing frequency.

Few interesting studies on the effect of vibration amplitude on nonlinear dynamic stability regions of composite plates
are available in the literature [19–24]. Librescu and Thangjitham [19] examined the nonlinear Mathiew–Hill equation
obtained from the assumed space-mode analytical solution of the plate and studied the effect of movable boundaries on
the dynamic instability region and frequency-amplitude response curves of shear deformable composite plates.
Bhimaraddi [20] employed the method of multiple-scales, Marin et al. [21] applied harmonic balance method, while
Wu and Shih [22] used incremental harmonic balance method to obtain an approximate periodic solution for nonlinear
flexural vibration amplitudes of laminated composite plates subjected to periodic in-plane loads. However, the steady-state
or transient nature of the flexural vibration and the effect of initial condition were not brought out in the above works due
to the limitations of their solution methodology. Analytical and experimental studies [13] indicate the existence of beats or
unsteady nature of the flexural vibration of plates under periodic in-plane load. Most recently, Ganapathi et al. [23,24]
carried out nonlinear dynamic response analysis to understand the parametric resonance characteristics of movable
composite plates subjected to periodic in-plane load and reported the existence of beats, i.e., the unsteady nature of
vibration. However, further studies are required to understand the effect of initial condition on the steady-state or unsteady
nature of the flexural vibration of composite plates under periodic in-plane load.

In the present paper, a four-noded shear flexible quadrilateral high precision plate bending element [25] is employed to
analyze the large amplitude flexural vibration characteristics of thin isotropic and composite plates under transverse
harmonic pressure or periodic in-plane load. The nonlinear stiffness matrix is formulated based on von K�arm�an’s
assumptions to obtain the stiffness interaction between the in-plane and bending degrees of freedom. Suitable time
functions for the in-plane and bending degrees of freedom are assumed and a nonlinear matrix amplitude equation is
formulated using Galerkin’s method [2]. The coupled nonlinear matrix amplitude equation is solved to obtain the nonlinear
free flexural vibration frequencies of isotropic and composite plates with different boundary conditions. Thereafter, the
frequency-amplitude relationships for the flexural vibration of such plates under transverse harmonic pressure or periodic
in-plane load are evaluated using the same matrix-amplitude equation. Finally time history analysis of such plates is
carried out using Newmark’s time integration technique to investigate the steady-state or transient nature of the flexural
vibration under periodic transverse or in-plane load.

2. Finite element formulations

The displacement components at a generic point (x, y, z) of a shear deformable rectangular plate can be expressed
as [25]

uðx; y; zÞ ¼ u0ðx; yÞ þ zf�w;x þ gxzðx; yÞg

vðx; y; zÞ ¼ v0ðx; yÞ þ zf�w;y þ gyzðx; yÞg

wðx; y; zÞ ¼ w0ðx; yÞ ð1Þ

Here, u0, v0, w are the mid-surface displacements; gxz and gyz are the rotations due to shear; ( ), x and ( ), y represent the
partial differentiation with respect to x and y; fx=�w,x+gxz(x, y) and fy=�w,y+gyz(x, y) are the nodal rotations.

A four-noded rectangular high precision plate bending element [25] with the following complete cubic polynomial
shape functions for the in-plane and lateral displacements (u0, v0, w0) and linear polynomial shape functions for the shear
strains (gxz, gyz) is employed here:

u0 ¼ ½1; x; y; x
2; xy; y2; x3; x2y; xy2; y3; x3y; x2y2; xy3; x3y2; x2y3; x3y3�fcig; i ¼ 1;16

v0 ¼ ½1; x; y; x
2; xy; y2; x3; x2y; xy2; y3; x3y; x2y2; xy3; x3y2; x2y3; x3y3�fcig; i ¼ 17;32

w0 ¼ ½1; x; y; x
2; xy; y2; x3; x2y; xy2; y3; x3y; x2y2; xy3; x3y2; x2y3; x3y3�fcig; i ¼ 33;48

gx ¼ ½1; x; y; xy�fcig; i ¼ 49;52

gy ¼ ½1; x; y; xy�fcig; i ¼ 53;56 ð2Þ
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where ci are constants and are expressed in terms of nodal displacements (u0, u0,x, u0,y, u0,xy, v0, v0,x, v0,y, v0,xy, w, w,x, w,y, w,xy,
gxz and gyz) in the finite element discretization.

Following standard procedure (minimization of potential energy), the equation of equilibrium of the plate under lateral
pressure and in-plane load may be written as

Mmm 0

0 Mbb

" #
€dm

€db

( )
þ

Kmm Kmb

Kbm Kbb

" #
dm

db

( )
þ

0 N1ðwÞ

N2ðwÞ N3ðw;wÞ

" #
dm

db

( )
¼

NðtÞ

qðtÞ

( )
ð3Þ

Here, M and K, are the mass and linear stiffness matrix respectively, N1, N2 and N3 are nonlinear stiffness matrices (depends
on transverse displacement w); Subscripts ‘m’ and ‘b’ correspond to membrane (u0, v0) and bending (w, gxz, gyz) components
of the degrees of freedom and the corresponding mass and stiffness matrices respectively. q(t) and N(t) are the load vectors
corresponding to uniformly distributed transverse load and in-plane edge load, respectively.

3. Solution procedure

The displacement components for the nonlinear vibration of symmetrically laminated composite plates under
transverse harmonic pressure q0 sinyt or periodic in-plane load Nd sin2 yt are assumed to be of the form

dðtÞ ¼ fu0 sin2 yt; v0 sin2 yt; w sinyt; gxz sinyt; gyz sinytgT ð4Þ

substituting the assumed solution (4) in the governing Eq. (3) one gets

Kmm Kmb þ N1 sinyt

Kbm þ N2 sin yt Kbb þ N3 sin2 yt

" #
dm sin2 yt

db sinyt

( )
� y2 �2Mmm 0

0 Mbb

" #
dm cos 2yt

db sinyt

( )
�

Nd sin2 yt

q0 sinyt

( )
¼

Ru

Rw

( )
ð5Þ

Since Eq. (5) does not satisfy the equilibrium equation at all the points, taking the weighted residual along the pathR T=4
0 fRugsin2 yt ¼ f0g and

R T=4
0 fRwgsinyt ¼ f0g the following matrix-amplitude equation is obtained

3

4
Kmm

8

3p
Kmb þ

3

4
N1

8

3p
Kbm þ

3

4
N2 Kbb þ

3

4
N3

2
664

3
775 dm

db

( )
� y2 �Mmm 0

0 Mbb

" #
dm

db

( )
¼

3

4
Nd

q0

8<
:

9=
; ð6Þ

This matrix-amplitude Eq. (6) is employed to study the free and forced vibration characteristics of isotropic and composite
plates as follows:

3.1. Nonlinear free flexural vibration

In the case of free flexural vibration (q0=Nd=0), the matrix amplitude Eq. (6) is solved iteratively as explained in Ref. [2]
to obtain the backbone curves i.e., the frequency-amplitude relationships of isotropic and composite plates.

3.2. Nonlinear forced vibration under transverse harmonic pressure q0 sinyt

For the case of forced vibration under transverse harmonic load q0 sinyt, the above matrix amplitude equation (Nd=0) is
solved by Newton–Raphson technique to obtain the steady-state flexural vibration amplitude fdm; dbg

T (the maximum
nodal displacements) of isotropic and composite plates corresponding to non-dimensional excitation frequency y=oL and
load parameter q0.

3.3. Primary dynamic stability under in-plane load Nd sin2 yt

Similarly, for the case of periodic in-plane load of the form Nd sin2 yt, Eq. (6) is solved by Newton–Raphson technique to
obtain the steady-state flexural vibration amplitude of the plate fdm; dbg

T corresponding to non-dimensional excitation
frequency y=oL and load parameter Nd/Ncr. Here, Ncr is the static buckling load.

3.4. Primary dynamic stability under in-plane load N07N1 cos 2yt

In general, the periodic in-plane load and the displacement components are expressed as

NðtÞ ¼ N07N1 cos 2yt or NðtÞ ¼ Ns7Nd sin2 yt

dðtÞ ¼ fus þ ud sin2 yt; vs þ vd sin2 yt; w sinyt; gxz sin yt; gyz sinytgT

fdmðtÞg ¼ fdsg þ fddgsin2 yt ð7Þ
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Here, ‘‘s’’ and ‘‘d’’ represents the static and dynamic components of the in-plane displacements (u0, v0). Substituting the
above displacement components into the equilibrium Eq. (3) and taking the weighted residual as before, the matrix-
amplitude equation is modified as

½Kmm�fdsg ¼ fNsg ð8aÞ

3

4
Kmm

8

3pKmb þ
3

4
N1

8

3p
Kbm þ

3

4
N2 Kbb þ

3

4
N3

2
664

3
775 dd

db

( )
� y2 �Mmm 0

0 Mbb

" #
dd

db

( )
¼

7
3

4
Nd

0

8<
:

9=
;� ½N2� ds

� �
ð8bÞ

Eq. (8) is solved for fdsg, fddg and fdbg to obtain the steady-state flexural vibration amplitude fdm;dbg
T of the composite

plates corresponding to non-dimensional excitation frequency y=oL and load parameters Ns/Ncr and Nd/Ncr.

3.5. Time history analysis under periodic transverse or in-plane load

Further, the governing Eq. (3) is solved with Newmark’s time integration technique starting from different initial
conditions (in particular fdm; dbg

T obtained from the corresponding matrix-amplitude equation) to investigate the steady-
state or unsteady-state nature of flexural vibration under transverse harmonic pressure or periodic in-plane load. This is an
implicit time integration method, where the nonlinear stiffness matrix is continuously updated until the following
equation [27] is satisfied up to desired accuracy

½KL þ KNL þ a0M�fdtiþDtg ¼ fFtiþDtg þMða0dti
þ a2

_dti
þ a3

€dti
Þ ð9Þ

here KNL is the nonlinear stiffness matrix. The constants are defined as a0 ¼ 1=gDt2, a2 ¼ 1=gDt and a3 ¼ ð1=2gÞ � 1, where
g ¼ 0:25Dt is the time step.

4. Results and discussions

Nonlinear vibration and dynamic stability characteristics of thin laminated composite plates are studied here. The
material properties, used in the present analysis are

EL=ET ¼ 40:0; GLT=ET ¼ 0:6;GTT=ET ¼ 0:5; nLT ¼ 0:25; ET ¼ 100000:0 and r ¼ 1:0

where E, G, n and r are Young’s modulus, shear modulus, Poisson’s ratio and density. Subscripts L and T represent the
longitudinal and transverse directions respectively with respect to the fibers. All the layers are of equal thickness. For
isotropic plate, Poisson’s ratio (n) is taken as 0.3. Fiber orientation is measured from X-axis. The different boundary
conditions considered in the present analysis are

Simply supported cases: w=0 at x=0, a and y=0, b

In addition to the above constraints on transverse displacement (w), the following four different in-plane boundary
conditions are considered here:

Immovable (SS1) u0=v0=0 at x =0, a and y=0, b

Movable (SS2) u0=0 at x=a/2; v0=0 at y=b/2
Table 1
Comparison of nonlinear frequency ratio (oNL/oL) of immovable isotropic square plates (a=b; a/h=1000).

w/h 0.2 0.4 0.6 0.8 1

Immovable simply supported (SS1)

Present study

5�5 mesh 1.01962 1.07649 1.16557 1.28067 1.41597

7�7 mesh 1.01966 1.07662 1.16584 1.28110 1.41655

9�9 mesh 1.01966 1.07665 1.16589 1.28003 1.41666

Analytical integration [3] 1.0195 1.0757 1.1625 1.2734 1.4024

Spline finite strip method [26] 1.0197 1.0768 1.1662 1.2813 1.41729

Multi-mode approach [9] 1.0195 1.0765 1.1658 1.2796 1.4163

Immovable clamped (CC2)

Present study

5�5 mesh 1.00735 1.02909 1.06439 1.11201 1.17054

7�7 mesh 1.00725 1.02869 1.06344 1.11021 1.16759

9�9 mesh 1.00723 1.02860 1.06322 1.10981 1.16690

Elliptic integral [4] 1.0078 1.0326 1.069 1.1173 1.1757

Spline finite strip method [26] 1.0073 1.0287 1.0633 1.1101 1.1671

FE contd. method [10] 1.0073 1.0291 1.0648 1.1138 1.1762
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Partially movable (SS3) v0=0, at x=0, a; u0=0, at y=0, b

Partially movable (SS4) u0=v0=0 at x=a and y=b;
u0=constant at x=0, v0=constant at y=0

Clamped cases: w=0, w,x=0 at x=0, a; w=0, w,y=0 at y=0, b

In addition to the above constraints on transverse displacement (w), the following two different in-plane boundary
conditions are considered here

Immovable (CC1) u0=v0=0 at x =0, a and y=0, b

Movable (CC2) u0=0 at x=a/2; v0=0 at y=b/2

Before proceeding for the detailed parametric study, the efficacy of the present formulation is tested herein by studying
the nonlinear free flexural vibration frequencies of immovable simply supported (SS1) and clamped (CC1) isotropic plates
for which several numerical results are available in the literature. The matrix amplitude Eq. (6) with q0=N0=0 is solved
iteratively to obtain the nonlinear frequency (oNL) corresponding to maximum amplitude (wmax) of the plate. The variation
of nonlinear frequency ratio (oNL/oL; oL is the linear frequency) with non-dimensional maximum amplitude (wmax/h) is
evaluated for simply supported and clamped thin (a/h=1000) square plates and are shown in Table 1 along with the
published results. It is observed that the present results for the nonlinear frequency of immovable isotropic plates are in
close agreement with the available solutions. Further, a 9�9 mesh is found to be sufficient to model the full plate.
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Fig. 1. Steady-state flexural vibration of an isotropic square plate with movable simply supported boundary condition (SS2) under uniformly distributed

transverse harmonic pressure q0 sinyt (a/h=100; q0=0.20D/a3). (a) y=0.6oL, (b) y=0.8oL, (c) y=1.0oL, (d) y=1.2oL.

Table 2
The nonlinear frequency ratios (oNL/oL) of thin square plates (a/b=1; a/h=100) with different boundary conditions.

w/h Boundary condition

SS1 SS2 SS3 SS4 CC1 CC2

Isotropic plate

0.2 1.01967 1.00265 1.00637 1.00516 1.00728 1.00234

0.4 1.07669 1.01052 1.02518 1.02049 1.02878 1.00928

0.6 1.16597 1.02336 1.05559 1.04559 1.06363 1.02060

0.8 1.28131 1.0408 1.09640 1.07959 1.11055 1.03594

1.0 1.41684 1.06237 1.14618 1.12239 1.16808 1.05487

1.2 1.56783 1.08756 1.20331 1.17249 1.23474 1.07691

Cross-ply [01/901/01/901/01] plate

0.2 1.03147 1.00121 1.00165 1.01057 1.00847 1.00076

0.4 1.12099 1.00482 1.00658 1.04169 1.03347 1.00303

0.6 1.25723 1.01079 1.01473 1.09167 1.07390 1.00678

0.8 1.42805 1.01906 1.02599 1.15823 1.12820 1.01196

1.0 1.62368 1.02952 1.04023 1.23885 1.19461 1.01850

1.2 1.83697 1.04208 1.05729 1.33111 1.27141 1.01850

Angle-ply [451/�451/451/�451/451] plate

0.2 1.01473 1.00085 1.00796 1.00082 1.00717 1.00090

0.4 1.05776 1.00339 1.03135 1.00327 1.02834 1.00358

0.6 1.12601 1.00755 1.06885 1.00734 1.06258 1.00796

0.8 1.21542 1.01324 1.11848 1.01301 1.10855 1.01393

1.0 1.32185 1.02033 1.17837 1.02024 1.16474 1.02133

1.2 1.44162 1.02871 1.24629 1.02900 1.22969 1.03000
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4.1. Nonlinear free flexural vibration

Next, the backbone curves, i.e., the relationship between the nonlinear frequency ratio (oNL/oL) and non-dimensional
maximum amplitude (wmax/h) of isotropic, cross-ply [01/901/01/901/01] and angle-ply [451/�451/451/�451/451] thin square
plates (a/b=1; a/h=100) are studied for all the six boundary conditions (SS1, SS2, SS3, SS4, CC1 and CC2) in Table 2. It is
observed from Table 2 that the nonlinear flexural vibration frequencies (oNL) of isotropic plates increase with the increase
of vibration amplitude (w/h) for all the six boundary conditions considered in the present investigation. The degree of
hardening nonlinearity (i.e., increase of frequency with amplitude) is more for simply supported plates compared to those
of clamped plates and further depends on the in-plane boundary conditions. Immovable simply supported (SS1) or
clamped (CC1) plates have highest nonlinear flexural vibration frequencies, whereas, corresponding movable plates with
fully relaxed in-plane restrains at the edges (SS2 or CC2) have lowest flexural vibration frequencies. The nonlinear
frequencies of two additional simply supported boundary conditions (SS3 and SS4) with partially relaxed in-plane
qN = 0
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Fig. 2. Nonlinear flexural vibration amplitudes of immovable thin (a/h=100) square plates under uniformly distributed transverse harmonic pressure

q0 sinyt: (a) isotropic simply supported (SS1), (b) isotropic clamped (CC1), (c) cross-ply simply supported (SS1), (d) cross-ply clamped (CC1), (e) angle-ply

simply supported (SS1), (f) angle-ply clamped (CC1). (qN ¼ q0a3=D for isotropic plate and qN ¼ q0a3=ET t3 for composite plate).



ARTICLE IN PRESS

M.K. Singha, R. Daripa / Journal of Sound and Vibration 328 (2009) 541–554 547
constraints at the edges are also studied in Table 2. This increase of hardening nonlinearity with the increase of in-plane
restrains at the edges is also observed for cross-ply [01/901/01/901/01] and angle-ply [451/�451/451/�451/451] square
composite plates. It is observed that in general, the degree of hardening nonlinearity is more for cross-ply plates compared
to angle-ply plates for immovable boundary condition.

4.2. Nonlinear forced vibration under transverse harmonic pressure qðtÞ ¼ q0 sinyt

Now, the forced vibration characteristics of a movable simply supported (SS2) isotropic square plate (a/h=100) under
transverse harmonic pressure q0 sinyt (y is in the vicinity of linear vibration frequency oL; q0=0.20D/a3;
D ¼ Eh3=12ð1� n2Þ) are taken-up for investigation. The forced vibration amplitudes fdm; dbg

T are obtained from the matrix
amplitude Eq. (6). Time history analysis with Newmark’s time integration technique is carried out starting from the initial
condition (d ¼ fdm; dbg

T at time t=T/4) and the dynamic response of transverse displacement (wc/h) at the center and in-
plane displacement (100uc) at the mid-point of the edges are presented in Fig. 1 for different excitation frequencies
(y=0.6oL, 0.8oL, oL and 1.2oL). The dynamic response is observed to be steady-state and hence the validity of matrix-
amplitude Eq. (6) is established for the case of transverse vibration. Further, the steady-state vibration at excitation
frequency y=1.2oL is observed to be out-of-phase with the applied load corresponding to the flexural motion
dðtÞ ¼ fu0 sin2 yt; v0 sin2 yt; w sinðpþ yÞt; gxz sinðpþ yÞt; lyz sinðpþ yÞtgT.

Next, the nonlinear forced vibration amplitudes (w/h) of immovable simply supported (SS1) and clamped (CC1) plates
under transverse harmonic pressure q0 sin yt are studied Fig. 2. The backbone curves, i.e., the frequency-amplitude
relationships, for the case of free flexural vibration (q0=N0=0; as reported in Table 2), are represented in Fig. 2 as solid line.
The nonlinear forced vibration amplitudes (wmax/h) under non-dimensional excitation frequency (y/oL) is presented as
scattered symbols for various values of the non-dimensional load parameters qN ¼ q0a3=D and qN ¼ q0a3=ET t3 for isotropic
and composite plates respectively. It is observed from the figure that, the flexural vibration amplitude (w/h) increases as
the excitation frequency (y) either increases from zero or decreases from a higher value (say, y=2oL). As the excitation
frequency approaches the linear flexural vibration frequency (oL) of the plate from either side, the nonlinear flexural
vibration amplitude increases rapidly (tangential to the backbone curves) as structural damping is not considered in the
present study. Further, the vibration at a higher excitation frequency (points on the right side of the backbone curve) is
observed to be out-of-phase with the applied load.

4.3. Nonlinear forced vibration under periodic in-plane load Nd sin2 yt

Next, the nonlinear dynamic instability characteristics, i.e., the flexural vibration amplitudes of a movable simply
supported (SS2) isotropic square plate (a/b=1; a/h=100) under periodic in-plane load of the form Nd sin2 yt (Nd=0.5Ncr,
where Ncr is the static buckling load) are taken up for investigation. The steady-state flexural vibration amplitudes fdm; dbg

T

are obtained from the matrix amplitude Eq. (6). Similar to the static stability analysis [25], a load perturbation q0 sinyt (q0

produces an approximate central displacement of 0.002h) is applied here to initiate bifurcation buckling. Again, time
history analysis is carried out starting from the initial condition (d ¼ fdm;dbg

T at time t=T/4) and the dynamic response of
transverse displacement (wc/h) at the center and in-plane displacement (10uc) at the mid-point of the edges are presented
in Fig. 3 for different excitation frequencies (y=0.8oL, 0.9oL, oL and 1.1oL). The dynamic response is observed to be steady-
state and hence the validity of matrix-amplitude Eq. (6) is established again for the case of periodic in-plane load Nd sin2 yt.

Now, the steady-state flexural vibration amplitudes (w/h) of movable simply supported (SS2) and clamped (CC2) thin
square plates under periodic in-plane load Nd sin2 yt are studied in Fig. 4 for various values of load parameters (Nd=0,
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70.25Ncr, 70.5Ncr and 70.75Ncr). The matrix-amplitude Eq. (6) is solved for both compressive (+Nd) and tensile (�Nd) load
parameters and the corresponding frequency-amplitude curves are obtained on each side of the backbone curve (Nd=0) in
Fig. 4. Hence, for a particular load parameter, the left side and right side curves represent steady-state forced vibration
amplitude corresponding to excitation load Nd sin2 yt and �Nd sin2 yt, respectively. It is observed that with the increase of
compressive load parameters (Nd=0.25Ncr, 0.5Ncr and 0.75Ncr), the frequency-amplitude curves shift towards the left side of
the backbone curve, indicating a resonance at a lower excitation frequency. The same trend is observed for isotropic, cross-
ply [01/901/01/901/01] and angle-ply [451/�451/451/�451/451] square plates with movable in-plane boundary condition.

Thereafter, the dynamic instability regions of a simply supported (SS2) isotropic square plate under periodic in-plane
load Ns7Nd sin2 yt (Nd=0.5Ncr; y=0.9oL) are studied in Fig. 5. Modified matrix-amplitude Eq. (8) is solved iteratively to
obtain the frequency-amplitude relationships for five different values of static in-plane load Ns, i.e., Ns=�0.4Ncr, 0.2Ncr, 0,
0.2Ncr and 0.4Ncr. It is observed that, the dynamic instability region shifts towards lower frequency domain (y/oL), when
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the plate is subjected to a static compressive load, and shifts towards right, when the plate is subjected to a static tensile
load. Further, time history analysis is carried out with the initial condition fdm; dbg

T obtained from the modified matrix-
amplitude Eq. (8) and the dynamic response of the central displacement (wc/h) and in-plane displacement (50uc) at
the mid-point of the edges are presented in Fig. 6 along with corresponding phase portrait. It may be observed that
the response is approximately steady-state and harmonic. The static tensile load (Ns=�0.4Ncr, �0.2Ncr) stabilizes the
plate, while compressive load (Ns=0.2Ncr, 0.4Ncr) have a destabilizing effect with higher values of vibration amplitude
(w/h).
4.4. Primary dynamic stability under in-plane load N1 cos 2yt

Now, the effect of initial condition on the dynamic response (loss of stability) of a simply supported (SS2) isotropic thin
square plate under harmonic in-plane load NðtÞ ¼ 0:5Ncr cos 2yt (Ns=�0.5Ncr; Nd=Ncr; y=0.9oL) is investigated in Fig. 7.
Dynamic response analysis is carried out with different initial conditions (w0/h) and the variation of central displacement
(wc/h) with time is plotted in the figure along with the corresponding phase portraits. The buildup of vibration, when the
initial amplitude is much lower (w0/h=0.0365 and 0.134) than the steady-state amplitude is presented in Figs. 7(a) and (b).
The vibration amplitudes slowly increase with time and reach to their maximum (wmax/h=0.924 and 0.888) in about 5 to 6
cycles then slowly reduce in next 5 to 6 cycles to their corresponding minimum values (wmin/h=w0/h=0.0365 and 0.134).
This periodical increase and decrease of vibration amplitude showing the existence of beats has been reported earlier by
Bolotin [13] and Ganapathi et al. [23,24]. The steady state vibration amplitude as obtained from Eq. (8) is w/h=0.709. Hence,
the time history analysis starting from the same initial condition w0/h=0.709 is approximately steady (Fig. 7c) even though
minor oscillation (periodic) of the amplitude is observed (wmax/h=0.7102, wmin/h=0.6105). This minor oscillation is
attributed to the approximation involved in Eq. (8a) and the mismatch in time function of load ð0:5Ncr cos 2ytÞ and in-plane
strains ðe ¼ es þ ed sin2 yt þ eNL sin2 ytÞ. However, when the initial amplitude (w0/h=1.105 and 1.422) is higher than the
steady-state condition, vibration amplitude rapidly decrease to their corresponding minimum (wmin/h=0.2602 and 0.5748)
and then again increases to the initial amplitude (wmax/h=w0/h) as observed from Fig. 7(d) and (e). The dynamic response of
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symmetrically laminated cross-ply [01/901/01/901/01] and angle-ply [451/�451/451/�451/451] composite square plates
excited by harmonic in-plane load N=0.5Ncr cos 2yt (y=0.9oL; a/h=100) is studied in Fig. 8 starting from the initial condition
as obtained from Eq. (8). Similar to the isotropic plate, the response of cross-ply and angle-ply composite plates are
observed to be approximately steady-state.
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Now, the buildup of vibration of symmetrically laminated cross-ply [01/901/01/901/01] and angle-ply [451/�451/451/
�451/451] thin (a/h=100) and thick (a/h=20) composite square plates excited by harmonic in-plane load N=0.5Ncr cos 2yt

(y=0.9oL; a/h=100) is presented in Figs. 9 and 10, respectively. The time history analysis has been started with a small
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initial disturbance to initiate bifurcation buckling. Similar to the case of isotropic square plate, the vibration amplitude is
observed to increase slowly to the maximum and then decreases slowly to the initial amplitude. This periodic increase and
decrease of vibration amplitude takes about 13–15 cycles for composite plates.

It may be pointed out here that, the buildup of vibration from lower amplitude or from rest (w0/h approximately zero) is
of much practical significance to the designer. The maximum vibration amplitude in this case is observed to be 30 percent
higher than the corresponding steady-state condition.

5. Conclusions

Large amplitude flexural vibration characteristics of isotropic and composite square plates under transverse harmonic
pressure or periodic in-plane load are investigated here using a shear deformable finite element approach. The element
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employed here has good convergence property. A harmonic solution to the forced vibration problem is assumed and the
matrix-amplitude equation is obtained employing Galerkin’s method. The proposed matrix amplitude Eq. (6) is quite
accurate to predict the steady-state forced vibration amplitudes of symmetrically laminated composite plates under
transverse harmonic pressure q0 sinyt and periodic in-plane load Nd sin2 yt. However, minor oscillation in the vibration
amplitude is observed for Eq. (8) due to the mismatch in time function of applied load and in-plane strain ðed þ eNLÞsin2 yt.

In general, nonlinear frequency increases with the increase in vibration amplitude. This degree of hardening type of
nonlinearity is more for immovable in-plane boundary conditions compared to those of movable in-plane boundary
conditions. The buildup of vibration for a composite plate under periodic in-plane load will be useful to the designer
working in the area of nonlinear dynamics of composite plates.
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